歐姆定律對電流精確測量造成缺憾的解決方案
導(dǎo)讀:在眾多測量工作中,需要對電壓和電流進(jìn)行精確測量,并根據(jù)測量結(jié)果來計算器件功率及其它電氣參數(shù),例如功率效率測試和電池功耗分析等。
這些測量往往需要總誤差達(dá)到甚至低于0.1%的測量精度。但實際過程中,總測量精度會受限于測量過程中的若干個因素的制約,包括分流器、引線、測量環(huán)境、以及數(shù)字萬用表本身。
數(shù)字萬用表可對電流進(jìn)行非常精確的測量,但是當(dāng)電流超過10A時,許多數(shù)字萬用表內(nèi)置電流表的量程可能就不夠用了。這時人們可能會采用卡鉗式電流探頭測量電流。這個方法的使用方便,但精度有限,大約0.5%~1%,而且短時間內(nèi)就會產(chǎn)生漂移,必須經(jīng)常進(jìn)行手動歸零。因此,要測量幾十至上百安培的電流,工程師通常使用分流電阻,構(gòu)建定制解決方案,利用歐姆定律,通過分流電阻值和測量的壓降,計算出電流值。但是這種方法會引入許多誤差,必須花費大量精力使用外部手段驗證測試結(jié)果,但即使這樣,也很難確定最終的精度。因此,大電流和動態(tài)電流的精確測量,是非常具有挑戰(zhàn)性的。
缺陷原因
市場上常見的高精度電阻分流器的標(biāo)稱技術(shù)指標(biāo)可以達(dá)到0.5%,甚至有些可低至0.1%的誤差。但即便只有0.1%誤差的分流器,在未考慮其它可能引入的誤差之前,就會讓我們難以實現(xiàn)0.1%總測量誤差的目標(biāo)。更為嚴(yán)重的是,由于分流器的阻值會隨著溫度發(fā)生變化,而我們無法調(diào)整它的絕對電阻值來校準(zhǔn)它,而必須進(jìn)行更多的表征。同時,必須用高精度的萬用表來測量電壓和電阻的變化。普通的數(shù)字萬用表由于分辨率的限制,不能直接用于精確表征毫歐級的分流器。
那么,如何來精確表征一個分流器呢?一種方法是將其與預(yù)先表征過的分流器串聯(lián),使用程控電源為該串聯(lián)電路施加電流。使用串聯(lián)電路中已知特性的分流器來測量電流,再測量需要表征的分流器上的電壓,便可計算出這個分流器的電阻。在表征過程中,您必須等待分流器達(dá)到熱平衡,以獲取這個分流器受溫度影響而發(fā)生的變化值。在一個電流值完成表征后,隨即需要按一定的步進(jìn)提高電流值,再重復(fù)這個過程,直到最大的預(yù)期電流值,以表征分流器逐漸增加的自熱效應(yīng)。這個過程極其耗時耗力。
有一點必須考慮的是,鑒于分流器的電阻值僅為毫歐級,所以電路引線中的電阻也不容忽視。在使用10m?分流器時,即使引線額外增加僅僅10??電阻,也會導(dǎo)致誤差增加0.1%.為了預(yù)防引線電阻值加到被表征的分流器電阻值上,從而影響測量結(jié)果,應(yīng)該使用4線Kelvin連接方法。
圖1:利用Kelvin 4線連接的分流電阻器
溫度變化引入的誤差:
當(dāng)溫度變化時,所有電阻器的值都會發(fā)生或多或少的漂移(圖2)。這種效應(yīng)被量化為電阻溫度系數(shù)(TCR),單位通常為ppm/℃(見公式1)。普通銅線的TCR大約為4000ppm/℃。精密型分流器使用特殊合金進(jìn)行補償,將TCR降低到最低水平,可以實現(xiàn)10ppm或更出色的性能。然而,TCR絕不會減小到0,所以您必須計算其效應(yīng),特別是在電阻器功耗達(dá)到數(shù)瓦的時候,以確保環(huán)境溫度變化或自熱導(dǎo)致的溫度上升不會損害測量精度。對于25ppm電阻器,溫度每上升40℃,誤差將增加0.1%.此外,由于電阻隨溫度而改變,在電流發(fā)生變化之后,分流器兩端電壓的顯示值需要很長的時間才能穩(wěn)定下來,直到分流器達(dá)到熱平衡。熱穩(wěn)定時間取決于分流器材料的形狀、質(zhì)量和熱導(dǎo)率。對于物理尺寸較大的器件,它們可能長達(dá)幾分鐘。由于等待分流器溫度穩(wěn)定需要時間,這將會嚴(yán)重影響測試速度。
圖2:分流電阻的熱漂移
數(shù)字電壓表引入的誤差:
雖然高性能數(shù)字電壓表能夠測量微伏級電壓,但是在低信號電平時,數(shù)字電壓表自身的偏置誤差是決定分流器系統(tǒng)總體精度的最重要原因。數(shù)字電壓表的測量誤差包括了讀數(shù)誤差和偏置誤差。偏置誤差是有儀表本身決定的,與選用的量程和溫度有關(guān),而與被測量的信號無關(guān),這個值通常在微伏級。因此,這就決定了數(shù)字電壓表在測量分流器的低電壓信號時,存在一個不可小視的誤差下限。
熱電動勢引入的誤差:
當(dāng)電路由兩種不同金屬構(gòu)成,而且在不同端存在溫度差時,就會發(fā)生熱電效應(yīng),即Seebeck電壓。Seebeck電壓的大小取決于接觸的金屬種類及溫度差,通常為uW/℃的量級。熱電偶就是利用Seebeck熱電效應(yīng)來測量溫度。但在使用分流器的電流測量中,Seebeck熱電效應(yīng)會是常見的偏置誤差源。要最大限度減小熱電效應(yīng),必須謹(jǐn)慎選擇材料,保持系統(tǒng)的等溫狀態(tài)。因此,您應(yīng)盡量讓分流器測量電路遠(yuǎn)離可能導(dǎo)致溫度變化的熱源,例如散熱風(fēng)扇排出的氣流,并盡可能降低分流器自身的功耗。連接器的電鍍觸頭、繼電器到分流器合金的銅線連接(圖3),都可能構(gòu)成意外的熱電偶接點,其溫度相關(guān)的偏置電壓對測量結(jié)果會產(chǎn)生不利影響。例如:對于3.33uV/℃的材料,一旦溫度變化3℃,就會產(chǎn)生10uV的Seebeck偏置電壓,可能導(dǎo)致10 mV的信號測量產(chǎn)生0.1%誤差。
圖3:自熱導(dǎo)致分流器溫度上升
選擇分流器
要進(jìn)行精確的電流測量,首先應(yīng)使用高品質(zhì)的電阻。對于普通的電阻,由于引線電阻、較大的TCR、以及非理想的特性,最好不要使用它作為電流測量的分流器。此外,測量大、小電流的要求會相互矛盾,任何一個實際的測試系統(tǒng)可以測量的最大和最小電流值是有限的。
對于大電流,通過將分流器的功耗限制到適當(dāng)水平,以此確定該分流器的電流測量上限。根據(jù)P_D=I^2 R ,100A電流通過1m?電阻將消耗10W功率,產(chǎn)生100mV的壓降。在10W功耗條件下,TCR可能會導(dǎo)致分流器的電阻值發(fā)生非常大的變化,需要使用散熱器,或更大體積的器件以限制溫度的上升。
分流器上的瞬態(tài)壓降可能也會限制分流器電流測量的實際上限。在被測件端,實際輸入電壓等用電源輸出電壓將減去分流器和導(dǎo)線上的壓降。常用的方法是把電源遠(yuǎn)端感應(yīng)線跨過分流器,連接到被測件端。這樣電源可以提供額外的補償電壓,以穩(wěn)定被測件端的電壓(圖4)。然而,如果出現(xiàn)電流的突然變化,分流器仍將導(dǎo)致瞬態(tài)電壓偏置,?V=?I×R,之后電源才會穩(wěn)定到新的工作點。分流器瞬態(tài)壓降與電源固有的瞬態(tài)壓降相疊加,有可能導(dǎo)致被測件重置或產(chǎn)生其它錯誤行為。
圖4:包括遠(yuǎn)端感應(yīng)連接的電源
對于小電流的測量,根據(jù)V=I×R ,必須使用大分流電阻以使生成的足夠高的偏置電壓,降低測量誤差,提供測量精度。如果測量的電流是變化的,有大電流和小電流,在使用單分流器系統(tǒng)的時候,就可能出現(xiàn)問題。一方面,需要分流器能適用于足夠高的電流,需要克服功耗和瞬態(tài)響應(yīng)因素的限制。另一方面,在小電流的測量時又要確保足夠的精度,但這時,數(shù)字電壓表和Seebeck熱偏置電壓造成的誤差將是不可接受的。
您可能想再使用一個額外的分流器和旁路開關(guān),為小電流測量生成較大的、更容易測量的電壓信號。然而,將這個額外的分流器切換到電路中進(jìn)行測量,需要進(jìn)行大量編程工作,因為它必須與被測件活動導(dǎo)致的電流變化保持同步。在大分流器上,意外的高瞬態(tài)電流可能導(dǎo)致電源電壓下降,造成被測件中斷工作。假定理想的大電流旁通開關(guān)可以實現(xiàn),那么突然增加或減少被測件電流路徑中的阻抗,仍有可能導(dǎo)致電源系統(tǒng)的輸出瞬變。
替代解決方案
鑒于設(shè)計和準(zhǔn)確驗證分流系統(tǒng)的困難性,我們可以更多來關(guān)注一下高性能電源通常內(nèi)置的、卓越的計量級測量手段。Agilent N7900A電源系列可以測量高達(dá)200A的電流,而增益誤差不超過0.04%.先進(jìn)的設(shè)計不僅保證了電流和電壓測量精度,它們還在極限環(huán)境條件下經(jīng)過測試和標(biāo)定。此外,N7900A系列還采用了熱模型,來實時估計分流元件的溫度,并對溫度導(dǎo)致的誤差進(jìn)行數(shù)字校正。與未進(jìn)行任何補償?shù)南到y(tǒng)相比,這個過程可改善精度,并極大縮短測試時間。N7900A系列內(nèi)部還具有無縫切換的高電流和低電流量程,可方便地對高動態(tài)電流進(jìn)行測量,無需使用外部分流器和相關(guān)的控制電路。從測量角度來看,量程變化不會對電源輸出產(chǎn)生任何干擾,完全是沒有間斷和毛刺的。
編輯:admin 最后修改時間:2018-01-05